
BLESS: Formal Specification and Verification of
Behaviors for Embedded Systems with Software1

Brian R. Larson, Patrice Chalin, John Hatcliff

Kansas State University

May 16, 2013

1Work supported in part by the US National Science Foundation (NSF)
(#0932289, #1239543), the NSF US Food and Drug Administration
Scholar-in-Residence Program (#1065887, #1238431) the National Institutes
of Health / NIBIB Quantum Program, and the US Air Force Office of Scientific
Research (AFOSR) (#FA9550-09-1-0138).

Larson, et. al. (Kansas State University) BLESS May 16, 2013 1 / 49

Current Systems Engineering Challenges

involve both hardware and software (design process needing to
move functionality between the two)

bigger systems (more µP; more software)

many teams (geographically dispersed, different organizations)

challenges of systems integration (getting teams to agree so that
the system pieces will eventually "glue together")

benefits from multiple forms of analysis (earlier is better)

Larson, et. al. (Kansas State University) BLESS May 16, 2013 2 / 49

AADL

Architecture Analysis and Design Language

AADL is a component-oriented modeling language for embedded
systems.

SAE International standard AS5506B (v2.1 2012) defines core
language semantics rigorously, but natural language.

AADL includes constructs for both hardware (physical) and software
(logical) components.

Extensible through annex sublanguages and user-defined
properties.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 3 / 49

AADL graphical

AADL Graphical Notation
System : PCA / PCA

safety

alarm

Get_Fault_Log

The_Fault_Log

Voltage_OOR Defective_Btty

Bubble
Pump_Too_Hot

Prime_Failure
Upstream_Occlusion

Downstream_Occlusion

Prescribed_Flow_Rate

Upstream_Flow_Rate

Downstream_Flow_Rate

Stop_Pump_Completely

Pump_At_KVO_Rate

Drug_Not_in_Library

Hard_Limit_Violated

Empty_Reservoir

Low_Reservoir

Alarm
Warning

HW_Detected_Failure

Max_Dose_Warning

Low_Battery_Warning

Security_Fault

operation

command parameters status

Get_Event_Log

The_Event_Log

Load_Drug_Library

Remaining_Battery_Time
Using_Battery_Power

Low_Battery_Warning

Prescribed_Flow_Rate

Stop_Pump_Completely

Pump_At_KVO_Rate

Drug_Not_In_Library

Hard_Limit_Violated

Alarm
Warning

Max_Dose_Warning

security

Prime Change_RateDoor_Open

Upstream_Flow_Rate

Downstream_Flow_Rate

Security_Fault

HW_Detected_Failure

Security_Provisioning

power

Remaining_Battery_Time

Using_Battery_Power

Low_Battery_Warning
Voltage_OOR Defective_Btty

Get_Fault_Log

The_Fault_Log

Get_Event_Log

The_Event_Log

Load_Drug_Library

Infused_Drug

fluid

Empty_Reservoir

Low_Reservoir

Door_Open

Upstream_Occlusion

Upstream_Flow_Rate

Pump_Too_Hot
Prime_Failure

Halt
Prime Change_RateRate

Downstream_Flow_Rate

Bubble

Downstream_Occlusion

Drug_Outlet

alarm

security

status

parameters

command

Security_Provisioning

System : PCA::operation / unnamed

command

parameters

status

Get_Event_Log

The_Event_Log

Load_Drug_Library

Remaining_Battery_Time

Using_Battery_Power

Low_Battery_Warning

Prescribed_Flow_Rate

Stop_Pump_Completely

Pump_At_KVO_Rate

Drug_Not_In_Library

Hard_Limit_Violated

Alarm Warning

Max_Dose_Warning

operation_process

Door_Open

Prime

Change_Rate

Prescribed_Flow_Rate

Patient_Request_Bolus

System_Status

Using_Battery_Power

Remaining_Battery_Time

Drug_Not_In_Library

Low_Battery_Warning

Load_Drug_Library

Get_Event_log

The_Event_Log

Hard_Limit_Violated

Pump_At_KVO_Rate

Max_Dose_Warning

Scan_DataWarningAlarm

Clinician_Requested_Bolus

Bolus_Duration

Rx
Confirm_Rx
Reject_Rx

Soft_Limit_Warning

Start_Flow
Stop_Flow

Alarm_Inactivation

Stop_Pump_Completely

Pause_Infusion
Resume_Infusion

encrypt

decrypt

sign

verify

verified

result

security

status

parameters

command

Upstream_Flow_Rate

Downstream_Flow_Rate

HW_Detected_Failure

Stand_Alone

control_panel

System_Status

Warning

Alarm

Alarm_Inactivation

Clinician_Request_Bolus

Bolus_Duration

Start_Flow
Stop_Flow

Confirm_Rx
Reject_Rx

Rx

Hard_Limit_Violated

Soft_Limit_Warning

Pause_Infusion
Resume_Infusion

patient_button

Request_Bolus

security

Prime

Change_Rate

Door_Open

Upstream_Flow_Rate

Downstream_Flow_Rate

scanner

Scan_Data

security

encrypt

decrypt

sign

verify

verified

result

Security_Fault

Security_Provisioning

Stand_Alone

Unable to make
feature group
connection to fg's
on left with Adele.

This is a known
issue and high-
priority for fixing.

Security_Fault

HW_Detected_Failure

Security_Provisioning

stand_alone_switch

Stand_Alone

Process : PCA::operation::operation_process / unnamed

Door_Open

Prime

Change_Rate

Prescribed_Flow_Rate

Patient_Request_Bolus

System_Status

Using_Battery_Power

Remaining_Battery_Time

Drug_Not_In_Library

Low_Battery_Warning

Load_Drug_Library

Get_Event_log

The_Event_Log

Hard_Limit_Violated

Pump_At_KVO_Rate

Max_Dose_Warning

Scan_Data
Warning

Alarm

Clinician_Requested_Bolus

Bolus_Duration

Rx

Confirm_Rx

Reject_Rx

Soft_Limit_Warning

Start_Flow

Stop_Flow

Alarm_Inactivation

operation_thread

Log_EventGet_Drug_Record The_Drug_Record

Door_Open

Patient_Request_Bolus

Using_Battery_Power

Remaining_Battery_Time

Low_Battery_Warning

CP_Start_Flow

CP_Stop_Flow

CP_Clinician_Requested_Bolus

CP_Bolus_Duration

Confirm_Rx

Reject_Rx

Alarm_Inactivation

Warning

Alarm

Pump_At_KVO_Rate

Stop_Pump_Completely

Scan_Data

Prime

Change_Rate

Prescribed_Flow_Rate

System_Status

Drug_Not_In_Library

Hard_Limit_Violated

Max_Dose_Warning

Rx

Soft_Limit_Warning

command parame... status security

Pause_Infusion

Resume_Infusion

encrypt
decrypt

sign
verify

verified

result

Upstream_Flow_Rate
Downstream_Flow_Rate

Stand_Alone

drug_library_thread

Load_Drug_Library

Get_Drug_Record The_Drug_Record

event_logger_thread

Get_Event_Log

The_Event_Log

Log_Event

Stop_Pump_Completely

Pause_Infusion

Resume_Infusion

encrypt
decrypt

sign
verify

verified

result

securitystatusparameterscommand

Upstream_Flow_Rate
Downstream_Flow_Rate

can't make feature group connectionsHW_Detected_Failure

Stand_Alone

Larson, et. al. (Kansas State University) BLESS May 16, 2013 4 / 49

AADL textual

AADL Textual Notation

� �
system PositionControlSystem
features
PositionSetpoint: in event data port Position;
properties

Timing_Properties::Clock_Period_Range=>PSC::StepDuration;
end PositionControlSystem;

system implementation PositionControlSystem.common
subcomponents
c: system Controller; --processor, memory, process, threads
a: system Actuator; --motor, valve, hard-wired circuits

connections
ps: port PositionSetpoint->c.PositionSetpoint;
ac: subprogram access c.ActuatorCommand -> a.ActuatorCommand;

end PositionControlSystem.common;� �
Larson, et. al. (Kansas State University) BLESS May 16, 2013 5 / 49

AADL tools

AADL Tools

Open-Source AADL Tool Environment (OSATE): provides reference
implementation as Eclipse plugin.2

AADL Inspector: stand-alone commercial tool3

many analysis tools available:
scheduling (Cheddar), code generation (Ocarina-RAMSES),
requirements (RDALTE), mass, power, port connection consistency,
bus power draw, ARINC-653 configuration, unhandled faults, fault-tree
analysis, failure modes and effects analysis, functional hazard
analysis, statistical model checking (PRISM), Lute

2Software Engineering Institute at Carnegie Mellon University
3Ellidiss Technologies

Larson, et. al. (Kansas State University) BLESS May 16, 2013 6 / 49

AADL SAVI

“Integrate Then Build"

System Architecture Virtual Integration (SAVI):

Boeing, Airbus, Lockheed Martin, BAE Systems, Rockwell Collins, GE
Aviation, FAA, DoD, SEI, Honeywell, Goodrich, United Technologies,
and NASA

precise system architecture – machine-analyzable, single
architectural model annotated with precise notation

important interactions are specified and interfaces are designed,
and integration verified before the internals of components are
built

produce implementations that are compliant with the architecture

Larson, et. al. (Kansas State University) BLESS May 16, 2013 7 / 49

AADL SAVI

Annex Sublanguages

The AADL standard defines a core language to express system
partitioning and connectivity.

The core language allows extension by annex sublanguages.

annex MyAnnex {** . . . **}

Several annex sublanguages have been standardized by SAE
International as annexes to the core standard.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 8 / 49

AADL limitations

AADL Has No Behavioral Interface Specifications

AADL emphasizes "integration" (as in the SAVI program), but current
only provides structural / type-based declaration of interfaces, but no
behavior properties

What is true about the component when it issues an event on a
port?

What is assumed by a component when it reacts to an event?

What do emitted/received values mean?

Larson, et. al. (Kansas State University) BLESS May 16, 2013 9 / 49

AADL limitations

Weak Specifications for Internal Component
Behavior

AADL provides a Behavioral Annex sublanguage grammar, but no
semantics for BA, much less formal semantics.� �
annex behavior_specification {**
variables
last_beat: BLESS_Types::Time;

states
power_on : initial state;
pace : complete state;
sense : complete state;
check_pace_vrp : state;
check_sense_vrp : state;
off : final state;� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 10 / 49

AADL limitations

� �
transitions
T1: power_on-[]->sense
{n! & last_beat := now};

T2: pace,sense-[on dispatch stop]->off;
T3: pace-[on dispatch timeout (p n) l ms]->pace
{p! & last_beat := now};

T4: pace-[on dispatch s]->check_pace_vrp;
T5: check_pace_vrp-[(now-last_beat) < r]->pace;
T6: check_pace_vrp-[(now-last_beat) >= r]->sense
{n! & last_beat := now};

T7: sense-[on dispatch timeout (p n) l ms]->pace
{p! & last_beat := now};

T8: sense-[on dispatch s]->check_sense_vrp;
T9: check_sense_vrp-[(now-last_beat) < r]->sense;
T10: check_sense_vrp-[(now-last_beat) >= r]->sense
{n! & last_beat := now};

**}; --end of BA for VVI� �
Larson, et. al. (Kansas State University) BLESS May 16, 2013 11 / 49

AADL limitations

No Reasoning Framework

AADL emphasizes analysis, but doesn’t provide a semantics nor
foundational verification algorithms for reasoning about component
composition nor BA to interface compliance.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 12 / 49

AADL needs

AADL Needs

formal behavior interface specification language

formal component behavior language

verification method that implementation meets specification

verification tools that produce independently auditable evidence of
compliance of behaviors to specs

Larson, et. al. (Kansas State University) BLESS May 16, 2013 13 / 49

BLESS

BLESS is Annex Sublanguage of AADL

BLESS programs are attached to system architecture to define
component behavior.

SAE International standard AS5506B defines the Architecture Analysis
and Design Language (AADL). Discovered in 2007, AADL replaced
crude structural constructs of DAREN.

BLESS is pure behavior; AADL is pure structure.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 14 / 49

BLESS

BLESS is Programming Language to Control
Machines

Behavior Language for Embedded Systems with Software (BLESS)
mathematically defines embedded programs, their specifications, and
their executions from first principles

BLESS assertions provide formal behavior interface specification
language

BLESS annex subclauses provide formal component behavior
language

BLESS proof tool enables verification method that implementation
meets specification that produces independently auditable
evidence of compliance of behaviors to specs

Larson, et. al. (Kansas State University) BLESS May 16, 2013 15 / 49

BLESS

BLESS Proves Component Behavior Correctness

Formally prove that every execution upholds its specification by:

Write BLESS contracts for AADL component interfaces

Write BLESS internal component behaviors

Annotate programs with BLESS assertions forming proof outlines.

Use proof tool to transform outlines into proofs.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 16 / 49

BLESS BA

BLESS akin BA

Behavior specification annex sublanguage standardized as annex
document of AS5506 ; known as “BA"

BA inspired BLESS; coordinated grammars during standardization
process. Like BA, BLESS behaviors are state-transition systems
augmented with simple temporal logic formulas.

assert
assertion declarations

invariant
invariant assertion

variables
variable declarations

states
state declarations

transitions
source-[condition]->destination {action};

Larson, et. al. (Kansas State University) BLESS May 16, 2013 17 / 49

Assertion

BLESS Assertions

Proof outlines are Assertions4 attached to states, and inserted before
and after actions.

Assertions are bounded, first-order predicates augmented with simple
temporal operators: @ ^ ’

Assertions delimited by double angle brackets: << >>

<<VS: : s@now and notVRP()>>

4Capital ‘A’ for temporal logic formulas used for BLESS
Larson, et. al. (Kansas State University) BLESS May 16, 2013 18 / 49

Assertion Triples

Verification Conditions

Verification conditions are Hoare triples:

{P} S {Q} ≡ <<P>>S<<Q>>

where P and Q are Assertions and S is an action.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 19 / 49

Proof Tool

BLESS Proof Tool Makes Proofs from Outlines

The BLESS proof tool transforms programs having proof outlines into a
complete, formal proof5 semi-automatically.

5Proofs are sequences of theorems, each of which is given, axiomatic, or
derived from earlier theorems by sound inference rules. No sequence of
theorems–no proof.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 20 / 49

Proof Tool

BLESS Proof Tool is Proof Checker

The BLESS proof tool applies human-selected tactics.

All information needed for proof must appear in BLESS program
source text.

The BLESS proof tool is a verification condition generator + proof
checker–not a theorem prover.

Resulting correctness proof created as witness during program proof
checking.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 21 / 49

Proof Tool

Generate VCs, Pound Into Normal Form

The BLESS proof tool

generates verification conditions from BLESS program text

reduces compound actions to atomic actions

transforms atomic actions into implications

pounds implications into axiomatic normal form

Human directed tactics selected from GUI, or read from script, applied
to each unsolved proof obligation in current pool.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 22 / 49

Assertion

BLESS Assertions

BLESS Assertions6 are first-order predicates enclosed in <<>> with a
simple temporal operator.

p@t means predicate p evaluated at real-valued time t.

Assertions may be attached as BLESS::Assertion properties of ports,
or appear within BLESS annex subclauses.

p^k means predicate p evaluated at k periods from now.

p’ is shorthand for the value of p one period hence: p’≡p^1

6capital ‘A’ is used as a proper noun for BLESS Asserions
Larson, et. al. (Kansas State University) BLESS May 16, 2013 23 / 49

VVI Mode Cardiac Pacing

VVI is ‘Hello World!’

VVI-mode cardiac pacing is ‘Hello World!’ example of
single-component behavior.

Composition of proved-correct AADL
components into proved-correct systems will be the subject of future
papers and presentations.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 24 / 49

VVI Mode Cardiac Pacing

VVI-Mode Pacemaker

“VVI" is a cardiac pacing mode that lets a patient’s heart beat on its
own above a prescribed rate, but take over to emit a short current to
cause contraction when the patient’s intrinsic rate fell below the
prescribed rate.7

The first “V" of “VVI" says pace ventricle (right-ventricle unless
otherwise indicated), the second “V" says sense ventricle, and the “I"
says to inhibit pacing when sensed beats are sufficiently fast.

The lower rate limit (LRL) is the heart rate, prescribed by the physician
in beats per minute at which the pacemaker will not let the heart beat
more slowly. In practice, the lower rate limit is less thought of by its rate
in beats-per-minute, but by its duration in milliseconds.

7PACEMAKER System Specification, Boston Scientific, 2007.
Larson, et. al. (Kansas State University) BLESS May 16, 2013 25 / 49

VVI Mode Cardiac Pacing AADL diagram

VVI.aadl Component

Larson, et. al. (Kansas State University) BLESS May 16, 2013 26 / 49

VVI Mode Cardiac Pacing AADL text

VVI.aadl Component� �
thread VVI
features
s: in event port; --ventricular contraction has been sensed
p: out event port --pace ventricle
{BLESS::Assertion=>"<<VP()>>";};

n: out event port --non-refractory ventricular sense
{BLESS::Assertion=>"<<VS()>>";};

l: in data port T; --lower rate limit interval
r: in data port T; --ventricular refractory period

properties
Dispatch_Protocol => Aperiodic;

annex BLESS {** . . . **};
end VVI;� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 27 / 49

VVI Mode Cardiac Pacing Medical Effectiveness

Effectiveness Property

The invariant that keeps the patient lively is:

“There will always be a pace or a (non-refractory) sense in
the previous lower-rate limit interval."

Long pauses between heartbeats must not occur. Cardiologists
choose a lower-rate limit (LRL) maintained by the pacemaker, on
demand, when the patient’s intrinsic rate would be too slow.

A typical LRL of 60 beats-per-minute (bpm) has an LRL interval of
1000 ms.

Real hearts are electrically-noisy after contraction. Therefore, during
ventricular refractory period (VRP) following a sense or pace, electrical
signals should be ignored.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 28 / 49

BLESS source Invariant

Thread Invariant

Thread behavior is specified by its thread invariant, much like a loop
invariant, and its BLESS::Assertion properties of ports.

The current instant is now.� �
invariant
<<LRL(now)>> --LRL is true, whenever "now" is� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 29 / 49

BLESS source assert

Assertion LRL

Assertion LRL takes a parameter x.

The invariant says LRL(now) will be true, whenever now happens to
be.� �

<<LRL:x: --Lower Rate Limit
exists t:T --there was a moment
in x-l..x --within the previous LRL interval
that (n@t or p@t) >> --with a pace or non-refractory sense� �

(there is a time, t in the lower-rate limit interval before time x in which
either a ventricular-pace, or non-refractory ventricular-sense event
occurred.)

Larson, et. al. (Kansas State University) BLESS May 16, 2013 30 / 49

BLESS source assert

Ventricular Refractory Period (VRP)

After contraction, hearts have electrical noise that should be ignored.
The ventricular refractory period (VRP) determines the period of
unresponsiveness. notVRP becomes true after VRP has expired.� �

<<notVRP: : --Ventricular Refractory Period
(n or p)@last_beat --last beat before now,
and (now-last_beat)>=r>> --older than VRP� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 31 / 49

BLESS source assert

Port Assertions

Assertion properties of out event ports specify what must be true when
an event is sent by the port.� �

<<VS: : --ventricular sense detected, not in VRP
s@now and notVRP() >>

<<VP: : --cause ventricular pace
(n or p)@(now-l) --last beat occurred LRL interval ago,
and --not since then
not (exists t:T --there is no time

in now-l,,now --since then, ",," means open interval
that (n or p)@t) >> --with a pace or sense� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 32 / 49

BLESS source states

States

Thread states may be

initial starting state, must have exactly one

final ending state, no outgoing transitions

complete suspend until next dispatch upon entering

execute transitory states

States may have Assertions that specify what is true when the thread
is in a state.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 33 / 49

BLESS source states

States� �
states
power_on : initial state --powered-up,
<<VS()>>; --start with "sense"

pace : complete state
--a ventricular pace has occured in the
--previous LRL-interval milliseconds

<<PACE(now)>>;
check_pace_vrp : state

--execute state to check if s sooner than VRP after pace
<<s@now and PACE(now)>>;

sense : complete state
--a ventricular sense has occured in the
--previous LRL-interval milliseconds

<<SENSE(now)>>;
check_sense_vrp : state

--execute state to check if s sooner than VRP after sense
<<s@now and SENSE(now)>>;

off : final state; --upon "stop"� �
Larson, et. al. (Kansas State University) BLESS May 16, 2013 34 / 49

BLESS source states

State Assertions

� �
<<PACE:x: --pace occurred in the previous LRL interval
p@last_beat and --previous beat was a pace
(exists t:T --there is a time
in x-l..x --in the previous LRL interval
that p@t) >> --with a ventricular pace

<<SENSE:x: --sense occurred in the previous LRL interval
n@last_beat and --previous beat was a sense
(exists t:T --there is a time
in x-l..x --in the previous LRL interval
that n@t) >> --with a non-refractory sense� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 35 / 49

BLESS source states

Initial and Stop Transitions

Transitions have one or more source states, transition condition,
destination state, and possibly an action.� �
transitions
T1_POWER_ON: --initialization
power_on -[]-> sense
{<<VS()>>
n!<<n@now>> --first "sense" at initialization
& last_beat:=now<<last_beat=now>>};

T2_STOP: --turn off pacing
pace,sense -[on dispatch stop]-> off{};� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 36 / 49

BLESS source states

Transitions After Pace

� �
T3_PACE_LRL_AFTER_VP: --pace when LRL times out
pace -[on dispatch timeout (p n) l ms]-> pace
{ <<VP()>>
p!<<p@now>> --cause pace when LRL times out
& last_beat:=now <<last_beat=now>>};

T4_VS_AFTER_VP: --sense after pace=>check if in VRP
pace -[on dispatch s]-> check_pace_vrp{};� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 37 / 49

BLESS source states

Check if in VRP

� �
T5_VS_AFTER_VP_IN_VRP: -- s in VRP, go back to "pace" state
check_pace_vrp -[(now-last_beat)<r]-> pace{};

T6_VS_AFTER_VP_IS_NR: --s after VRP,
--go to "sense" state, send n!, reset timeouts

check_pace_vrp -[(now-last_beat)>=r]-> sense
{ <<VS()>>
n!<<n@now>> --send n! to reset timeouts
&last_beat:=now <<last_beat=now>>};� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 38 / 49

Verification Conditions

Verification Conditions

Subprogram behaviors have one verification condition.

Thread behaviors have a verification condition for each state and
transition.

VVI.aadl requires 15 verification conditions.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 39 / 49

Verification Conditions complete states

Complete State Proof Obligations

The Assertions of complete states must imply the thread
invariant.� �
P [64] <<PACE(now)>>
S [51] ->
Q [51] <<LRL(now)>>
What for: <<M(pace)>> -> <<I>> from invariant I
when complete state pace has Assertion
<<M(pace)>> in its definition.� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 40 / 49

Verification Conditions execute states

Execute State Proof Obligations

The execute states, check_pace_vrp and check_sense_vrp, must have
an enabled, outgoing transition:� �
P [71] <<s@now and PACE(now)>>
S [71]->
Q [71] <<((now-last_beat) < r) or ((now-last_beat) >= r)>>
What for: Serban’s Theorem: disjunction of execute conditions
leaving execution state check_pace_vrp,
<<M(check_pace_vrp)>> -> <<e1 or e2 or . . . en>>� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 41 / 49

Verification Conditions transitions

Initial Transition Proof Obligation

For transition T1_POWER_ON from the power_on initial state:� �
P [60] <<VS()>>
S [82]<<VS()>>
n!
<<n@now>>
&
last_beat := now
<<last_beat = now>>
Q [68] <<SENSE(now)>>
What for: <<M(power_on)>> A <<M(sense)>> for
T1_POWER_ON:power_on-[]->sense{A};� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 42 / 49

Proof of VVI.aadl

Proof of VVI.aadl

Though rather long, inspecting the generated proof is the means to
convince oneself that all of the obligations have indeed been
proved.

The proof of VVI.aadl requires 123 theorems, that last of which says all
verification conditions have proofs.

Larson, et. al. (Kansas State University) BLESS May 16, 2013 43 / 49

Proof of VVI.aadl VVI Complete State Proofs

pace upholds invariant

The first three theorems prove that the Assertion of complete state
pace upholds the thread invariant.� �
Theorem (1) [serial 1155]
76 {P} <<(exists t:Timing_Properties::Time

in now-PP::lower_rate_limit_interval..now
that vp@t)

and
vp@last_vp_or_vs>>

64 S =>
64 {Q} <<(exists t:Timing_Properties::Time
in now-PP::lower_rate_limit_interval..now
that nr_vs@t)

or (exists t:Timing_Properties::Time
in now-PP::lower_rate_limit_interval..now
that vp@t)>>

by And-Elimination/Or-Introduction Schema: (P and Q)=>(P or R)� �
Larson, et. al. (Kansas State University) BLESS May 16, 2013 44 / 49

Proof of VVI.aadl VVI Complete State Proofs

� �
Theorem (2) [serial 1129]
76 {P} <<(exists t:Timing_Properties::Time

in now-PP::lower_rate_limit_interval..now
that vp@t)

and
vp@last_vp_or_vs>>

64 S =>
64 {Q} <<exists t:Timing_Properties::Time
in now-PP::lower_rate_limit_interval..now
that (nr_vs@t or vp@t) >>

by Distribution of preconditions, and over or, and distribution of postcondtitions, or over and
and theorem 1.� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 45 / 49

Proof of VVI.aadl VVI Complete State Proofs

� �
Theorem (3) [serial 1002]
76 {P} <<PACE(now)>>
64 S =>
64 {Q} <<LRL(now)>>

by Substitution of Assertion Labels
and theorem 2:� �

Larson, et. al. (Kansas State University) BLESS May 16, 2013 46 / 49

Summary

BLESS is

an AADL annex sublanguage defining behavior of components

a simple temporal logic to specify behavior (port Assertions and
component invariant)

a plug-in to OSATE which is a plug-in to Eclipse, which

generates verification conditions

transforms proof outlines into complete proofs (with human
guidance)

Larson, et. al. (Kansas State University) BLESS May 16, 2013 47 / 49

Summary

Future Work

coupling of BLESS behavior with EMV2 error models (SEI)

prove component invariants from proofs of subcomponents

simulation

code generation

proof obligation export to other tools

use “smarter" inference engine to generate intermediate
assertions in proof outline

submit BLESS to SAE International to become annex standard of
AADL

Larson, et. al. (Kansas State University) BLESS May 16, 2013 48 / 49

	AADL
	graphical
	textual
	tools
	SAVI
	limitations
	needs

	BLESS
	BA

	Assertion
	Triples

	Proof Tool
	Assertion
	VVI Mode Cardiac Pacing
	AADL diagram
	AADL text
	Medical Effectiveness

	BLESS source
	Invariant
	assert
	variables
	states
	states

	Verification Conditions
	complete states
	execute states
	transitions

	Proof of VVI.aadl
	VVI Complete State Proofs

	Summary
	Summary

